Promo !

Maîtrisez la Science de l’Entraînement : De la Théorie à la Pratique

$375.00

Êtes-vous prêt à plonger dans le monde fascinant de l’entraînement physique et à acquérir une compréhension profonde des principes scientifiques qui sous-tendent cette discipline ? Si oui, vous êtes au bon endroit !

Notre cours en ligne complet vous offre une opportunité unique d’explorer les fondements essentiels de l’entraînement, de la phase initiale de suivi à la physiologie de l’exercice appliquée, le tout dans un format convivial et hautement vulgarisé. Conçu tant pour les étudiants universitaires que les passionnés de l’entraînement de tous niveaux, ce cours est la clé pour comprendre véritablement ce qu’est l’entraînement et comment l’appliquer avec succès.

 

Il s’agit d’un cours qui vous permet de comprendre les notions théoriques fondamentales à la science de l’entraînement et de directement les appliquer à la pratique.

De plus, la formation sera graduellement bonifiée de contenu supplémentaire, le tout vous étant accessible sans aucun frais supplémentaire pour les nouveaux modules.

La formation comprend des vidéos, des documents PDF (Présentation Powerpoint) et des textes. En tout, plus de 400 pages de documentation supportées par des capsules vidéo concises et bien vulgarisées. Des capsules vidéo de retour sur les apprentissages favorisent l’intégration des notions à la pratique.

La formation comprend également 2 rencontres virtuelles ou en personne d’une durée de 60 minutes avec Maxime St-Onge, PhD et créateur de la formation. Ces rencontres sont fixées en fonction des disponibilités respectives des participants.

Description

Contenu de la formation

    1. Introduction
    2. Définitions
    3. Qualités physiologiques entrainables
    4. Variables de surcharge
    5. Applications pratiques des variables de surcharge
    6. Principes d’entraînement
    7. La rencontre initiale
    8. Stratification du risque
    9. Intensité des activités physiques
    10. Gestion de dossier
    11. Historique médical
    12. Facteurs psychosociaux
    13. Objectifs d’entraînement
    14. Composantes d’une séance d’entraînement
    15. Quantifier la sollicitation
    16. Introduction à la périodisation
    17. Comment périodiser
    18. Modèles de périodisation
    19. Types de progression
    20. La force musculaire
    21. Déterminants de la force musculaire
    22. Architecture musculaire
    23. Modification de la force musculaire
    24. Développement de la force musculaire
    25. Endurance musculaire
    26. Capacité aérobie
    27. Évaluation de la capacité aérobie
    28. Effet du rendement mécanique
    29. Rappel sur les adaptations aigues à l’effort
    30. Adaptations aigues et chroniques
    31. Développer la capacité aérobie
    32. Développer l’endurance aérobie
    33. Évaluation de l’endurance aérobie
    34. Entraînement de la capacité et de l’endurance aérobie
    35. Comparaison des modes d’entraînement aérobie
    36. Comment paramétrer les intervalles
    37. Qu’est-ce que la flexibilité
    38. Types et mesures de flexibilité
    39. Déterminants de la flexibilité
    40. Propriétés mécaniques liées à la flexibilité
    41. Développement de la flexibilité
    42. Méthodes d’entraînement de la flexibilité
    43. Paramètres de surcharge pour la flexibilité
    44. Effets des étirements sur la performance
    45. Étirements et prévention des blessures
    46. Qu’est-ce que la puissance (à venir)
    47. Déterminants de la puissance (à venir)
    48. Impact de la fatigue sur le développement de la puissance (à venir)
    49. Évaluation de la puissance (à venir)
    50. Développement de la puissance (à venir)
    51. Application pratique des concepts liés à la puissance (à venir)
    52. Gestion du poids
    53. Composition corporelle et poids
    54. Pourquoi prend-t-on du poids
    55. Évolution de la balance énergétique
    56. Régulation de la balance énergétique
    57. Interventions visant la gestion de la balance énergétique
    58. Est-ce que perdre du poids peut être problématique ?
    59. Hypertrophie musculaire (à venir)

Exemple du contenu (documents PDF)

Références

  1. Anderson O. Running Science. Human Kinetics 2013.
  2. The Running Athlete: A Comprehensive Overview of Running in Different Sports: Springer 2022.
  3. The Running Athlete 2022.
  4. Aller MJ. Science of Flexibility: Human Kinetics 2004.
  5. Boyle M. Functional Training for Sports: Human Kinetics 2004.
  6. Dallam GM, Jonas S. Championship Triathlon Training: Human Kinetics 2008.
  7. Dawes J, Roozen M. Developing Agility and Quickness: Human Kinetics 2012.
  8. Ferber R, MacDonald S. Running Mechanics and Gait Analysis. Human Kinetics 2014.
  9. Heyward VH, Gibson AL. Advanced Fitness Assessment and Exercise Prescription: Human Kinetics 2010.
  10. Reuter B. Developing Endurance: Human Kinetics 2012.
  11. Schoenfeld B. Science and Development of Muscle Hypertrophy: Human kinetics 2016.
  12. Shephard RJ, Astrand PO. Endurance in sport. Oxford: Blackwell Publishing 2000.
  13. Foran B, Kramer W, Apostolopoulou N, et al. High-Performance Sports Conditioning: Human Kinetics 2001.
  14. Cuthbert M, Haff GG, Arent SM, et al. Effects of Variations in Resistance Training Frequency on Strength Development in Well-Trained Populations and Implications for In-Season Athlete Training: A Systematic Review and Meta-analysis. Sports Medicine. 2021;51(9):1967-1982.
  15. KRAEMER WJ, FLECK SJ, EVANS WJ. Strength and Power Training: Physiological Mechanisms of Adaptation. Exercise and sport sciences reviews. 1996;24(1):363-398.
  16. Moritani T. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks. Journal of biomechanics. 1993;26:95-107.
  17. Borzuola R, Giombini A, Torre G, et al. Central and Peripheral Neuromuscular Adaptations to Ageing. Journal of Clinical Medicine. 2020;9(3):741.
  18. Häkkinen K, Pakarinen A, Kyröläinen H, et al. Neuromuscular Adaptations and Serum Hormones in Females During Prolonged Power Training. International journal of sports medicine. 1990;11(02):91-98.
  19. Marshall PWM, McEwen M, Robbins DW. Strength and neuromuscular adaptation following one, four, and eight sets of high intensity resistance exercise in trained males. European Journal of Applied Physiology. 2011;111(12):3007-3016.
  20. Nuzzo JL. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. The Journal of Strength & Conditioning Research. 2023;37(2):494-536.
  21. Remaud A, Cornu C, Guével A. Neuromuscular adaptations to 8-week strength training: isotonic versus isokinetic mode. European Journal of Applied Physiology. 2010;108(1):59-69.
  22. Tumkur Anil Kumar N, Oliver JL, Lloyd RS, et al. The Influence of Growth, Maturation and Resistance Training on Muscle-Tendon and Neuromuscular Adaptations: A Narrative Review. Sports. 2021;9(5):59.
  23. Balshaw TG, Massey GJ, Maden-Wilkinson TM, et al. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. Journal of Applied Physiology. 2016;120(11):1364-1373.
  24. Beltran Valls MR, Dimauro I, Brunelli A, et al. Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. AGE. 2014;36(2):759-772.
  25. Gruber M, Gollhofer A. Impact of sensorimotor training on the rate of force development and neural activation. European Journal of Applied Physiology. 2004;92(1-2):98-105.
  26. Ramírez Campillo R, Andrade DC, Álvarez C, et al. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. Journal of Sports Science and Medicine (2014) 13, 287-296. 2014.
  27. Iaia FM, Bangsbo J. Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scandinavian Journal of Medicine & Science in Sports. 2010;20:11-23.
  28. P Z, A M, Prampero PD. Interplay among the changes of muscle strength, cross-sectional area and maximal explosive power: theory and facts. European Journal of Applied Physiology. 2002;88(3):193-202.
  29. Santos EJ, Janeira MA. Effects of Reduced Training and Detraining on Upper and Lower Body Explosive Strength in Adolescent Male Basketball Players. The Journal of Strength & Conditioning Research. 2009;23(6):1737-1744.
  30. Wang X, Lv C, Qin X, et al. Effectiveness of plyometric training vs. complex training on the explosive power of lower limbs: A Systematic review. Frontiers in physiology. 2023;13:2769.
  31. Aagaard P, Simonsen EB, Andersen JL, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. Journal of Applied Physiology. 2002;93(4):1318-1326.
  32. Del Vecchio A, Casolo A, Dideriksen JL, et al. Lack of increased rate of force development after strength training is explained by specific neural, not muscular, motor unit adaptations. Journal of Applied Physiology. 2022;132(1):84-94.
  33. Garrandes FDR, Colson SS, Pensini M, et al. Neuromuscular Fatigue Profile in Endurance-Trained and Power-Trained Athletes. Medicine & Science in Sports & Exercise. 2007;39(1).
  34. Hodgson M, Docherty D, Robbins D. Post-Activation Potentiation. Sports Medicine. 2005;35(7):585-595.
  35. Issurin VB. Training Transfer: Scientific Background and Insights for Practical Application. Sports Medicine. 2013;43(8):675-694.
  36. Newton RU, Kraemer WJ. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength & Conditioning Journal. 1994;16(5):20-31.
  37. Ramírez-Campillo R, Meylan CMP, Álvarez-Lepín C, et al. The Effects of Interday Rest on Adaptation to 6 Weeks of Plyometric Training in Young Soccer Players. The Journal of Strength & Conditioning Research. 2015;29(4).
  38. Bompa TO. Periodization Training for Sports: Human Kinetics 1999.
  39. Description of ROM-SPORT I Battery: Keys to Assess Lower Limb Flexibility.
  40. Resistance Training Methods: From Theory to Practice: Springer 2022.
  41. Baechle TR, Earle RW. Essentials of Strength Training and Conditioning: Human Kinetics 2008.
  42. CHURCH JB, WIGGINS MS, MOODE FM, CRIST R. Effect of Warm-Up and Flexibility Treatments on Vertical Jump Performance. The Journal of Strength & Conditioning Research. 2001;15(3):332-336.
  43. Kraemer WJ, Ratamess NA. Fundamental of resistance training: Progression and Exercise Prescription. Med Sci Sports Exerc. 2004.
  44. NOÓBREGA ACL, PAULA KC, G. CARVALHO AC. INTERACTION BETWEEN RESISTANCE TRAINING AND FLEXIBILITY TRAINING IN HEALTHY YOUNG ADULTS. The Journal of Strength & Conditioning Research. 2005;19(4):842-846.
  45. Sands WA, McNeal JR, Stone MH, et al. Flexibility enhancement with vibration: Acute and long-term. Medicine & Science in Sports & Exercise. 2006;38(4):720-725.
  46. Saraiva AR, Reis VM, Costa PB, et al. Chronic Effects of Different Resistance Training Exercise Orders on Flexibility in Elite Judo Athletes. Journal of Human Kinetics. 2014;40(1):129-137.
  47. Asadi A, Arazi H, Ramirez-Campillo R, et al. Influence of Maturation Stage on Agility Performance Gains After Plyometric Training: A Systematic Review and Meta-analysis. The Journal of Strength & Conditioning Research. 2017;31(9):2609-2617.
  48. Asadi A, Arazi H, Young WB, De Villarreal ES. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. International Journal of Sports Physiology and Performance. 2016;11(5):563-573.
  49. Branch R. The Effects of Plyometric Training on Change of Direction Ability: A Meta Analysis Submission Type: Original Investigation.
  50. Dong K, Yu T, Chun B. Effects of Core Training on Sport-Specific Performance of Athletes: A Meta-Analysis of Randomized Controlled Trials. Behavioral Sciences. 2023;13(2):148.
  51. Gleim GW, McHugh MP. Flexibility and Its Effects on Sports Injury and Performance. Sports Medicine. 1997;24(5):289-299.
  52. Hojka V, Stastny P, Rehak T, et al. A systematic review of the main factors that determine agility in sport using structural equation modeling. Journal of Human Kinetics. 2016;52(1):115-123.
  53. Knudson DV, Magnusson P, McHugh M. Current Issues in Flexibility Fitness. President’s Council on Physical Fitness and Sports Research Digest. 2000.
  54. Kusnanik NW, Azmi K, Bird SP. Improving Anaerobic Capacity using Speed Agility and Quickness Training. Atlantis Press.
  55. Lima CD, Ruas CV, Behm DG, Brown LE. Acute Effects of Stretching on Flexibility and Performance: A Narrative Review. Journal of Science in Sport and Exercise. 2019;1(1):29-37.
  56. Miró A, Buscà B, Aguilera-Castells J, Arboix-Alió J. Acute Effects of Wearing Bite-Aligning Mouthguards on Muscular Strength, Power, Agility and Quickness in a Trained Population: A Systematic Review. International journal of environmental research and public health. 2021;18(13):6933.
  57. Nuzzo JL. The Case for Retiring Flexibility as a Major Component of Physical Fitness. Sports Medicine. 2020;50(5):853-870.
  58. Opplert J, Babault N. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature. Sports Medicine. 2018;48(2):299-325.
  59. Sheppard JM, Young WB. Agility literature review: Classifications, training and testing. Journal of Sports Sciences. 2006;24(9):919-932.
  60. Sporiš G, Milanović Z, Trajković N, Joksimović A. Correlation between speed, agility and quickness (SAQ) in elite young soccer players. Acta kinesiologica. 2011;5(2):36-41.
  61. Walankar P, Shetty J. Speed agility and quickness training: A review. Int J Phys Educ Sports Health. 2020;7(6):157-159.
  62. Weerapong P, Hume PA, Kolt GS. Stretching: Mechanisms and Benefits for Sport Performance and Injury Prevention. Physical Therapy Reviews. 2004;9(4):189-206.
  63. Young W, Farrow D. A Review of Agility: Practical Applications for Strength and Conditioning. Strength & Conditioning Journal. 2006;28(5):24-29.
  64. Bennett H, Slattery F. Effects of Blood Flow Restriction Training on Aerobic Capacity and Performance: A Systematic Review. The Journal of Strength & Conditioning Research. 2019;33(2).
  65. Castilla-López C, Molina-Mula J, Romero-Franco N. Blood flow restriction during training for improving the aerobic capacity and sport performance of trained athletes: A systematic review and meta-analysis. Journal of Exercise Science & Fitness. 2022;20(2):190-197.
  66. Flocco P, Bernabei L. Effects of blood flow restriction training on aerobic capacity: a systematic review and meta-analysis. Sport Sciences for Health. 2022.
  67. Formiga MF, Fay R, Hutchinson S, et al. EFFECT OF AEROBIC EXERCISE TRAINING WITH AND WITHOUT BLOOD FLOW RESTRICTION ON AEROBIC CAPACITY IN HEALTHY YOUNG ADULTS: A SYSTEMATIC REVIEW WITH META-ANALYSIS. Int J Sports Phys Ther. 2020;15(2):175-187.
  68. Foster C, Farland CV, Guidotti F, et al. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J Sports Sci Med. 2015;14(4):747-755.
  69. Gastin PB. Quantification of anaerobic capacity. Scandinavian Journal of Medicine & Science in Sports. 2007;4(2):91-112.
  70. Gist NH, Fedewa MV, Dishman RK, Cureton KJ. Sprint Interval Training Effects on Aerobic Capacity: A Systematic Review and Meta-Analysis. Sports Medicine. 2014;44(2):269-279.
  71. Green S, Dawson B. Measurement of Anaerobic Capacities in Humans. Sports Medicine. 1993;15(5):312-327.
  72. Patel H, Alkhawam H, Madanieh R, et al. Aerobic<i>vs</i>anaerobic exercise training effects on the cardiovascular system. World Journal of Cardiology. 2017;9(2):134.
  73. Stöggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Frontiers in Physiology. 2014;5.
  74. Syamsudin F, Wungu CDK, Qurnianingsih E, Herawati L. High-intensity interval training for improving maximum aerobic capacity in women with sedentary lifestyle: a systematic review and meta-analysis. Journal of Physical Education and Sport®(JPES). 2021;21(4):1788-1797.
  75. Taskin M, Akkoyunlu Y. EFFECT OF ANAEROBIC POWER ON AGILITY AND QUICKNESS IN MALE NATIONAL TAEKWONDO ATHLETES. Kinesiologia Slovenica. 2020;26(2):49-57.
  76. Treff G, Winkert K, Sareban M, et al. The Polarization-Index: A Simple Calculation to Distinguish Polarized From Non-polarized Training Intensity Distributions. Frontiers in Physiology. 2019;10.
  77. Westmacott A, Sanal-Hayes NEM, McLaughlin M, et al. High-Intensity Interval Training (HIIT) in Hypoxia Improves Maximal Aerobic Capacity More Than HIIT in Normoxia: A Systematic Review, Meta-Analysis, and Meta-Regression. International journal of environmental research and public health. 2022;19(21):14261.
  78. Wilson TM, Tanaka H. Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. American Journal of Physiology-Heart and Circulatory Physiology. 2000;278(3):H829-H834.
  79. Winett RA. Journal of Behavioral Medicine. 2003;26(3):183-195.
  80. Bell L, Ruddock A, Maden-Wilkinson T, Rogerson D. Overreaching and overtraining in strength sports and resistance training: A scoping review. Journal of Sports Sciences. 2020;38(16):1897-1912.
  81. Buckner SL, Jessee MB, Mouser GJ, et al. The basics of training for muscle size and strength: A brief review on the theory. Medicine & Science in Sports & Exercise. 2020;52(3).
  82. Carnes AJ, Mahoney SE. Polarized Versus High-Intensity Multimodal Training in Recreational Runners. International journal of sports physiology and performance. 2019;14(1):105-112.
  83. Chiang T-L, Chen C, Lin Y-C, et al. Effect of Polarized Training on Cardiorespiratory Fitness of Untrained Healthy Young Adults: A Randomized Control Trial with Equal Training Impulse. Journal of Sports Science and Medicine. 2023;22(2):263-272.
  84. DeWeese BH, Hornsby G, Stone M, Stone MH. The training process: Planning for strength–power training in track and field. Part 2: Practical and applied aspects. Journal of Sport and Health Science. 2015;4(4):318-324.
  85. Filipas L, Bonato M, Gallo G, Codella R. Effects of 16 weeks of pyramidal and polarized training intensity distributions in well‐trained endurance runners. Scandinavian Journal of Medicine & Science in Sports. 2022;32(3):498-511.
  86. França EF, Antunes A, Da Silva AC, et al. Concepts and principles of sports training: A narrative review based on the classic literature of reference. Int J Phys Educ Sports Health. 2022;9:214-217.
  87. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of physiology. 2012;590(5):1077-1084.
  88. Hebisz P, Hebisz R. The Effect of Polarized Training (SIT, HIIT, and ET) on Muscle Thickness and Anaerobic Power in Trained Cyclists. International journal of environmental research and public health. 2021;18(12):6547.
  89. Issurin VB. Generalized training effects induced by athletic preparation: A review. Journal of Sports Medicine and Physical Fitness. 2009;49(4):333-345.
  90. Issurin VB. New Horizons for the Methodology and Physiology of Training Periodization. Sports Medicine. 2010;40(3):189-206.
  91. Kim TH, Han JK, Lee JY, Choi YC. The Effect of Polarized Training on the Athletic Performance of Male and Female Cross-Country Skiers during the General Preparation Period. Healthcare. 2021;9(7):851.
  92. Morente Montero Á. Sports training in Ancient Greece and its supposed modernity. Journal of Human Sport and Exercise. 2019;15(1).
  93. Mukhopadhyay K. Physiological basis of adaptation through super-compensation for better sporting result. Advances in Health and Exercise. 2021;1(2):30-42.
  94. Muñoz I, Seiler S, Bautista J, et al. Does Polarized Training Improve Performance in Recreational Runners? International Journal of Sports Physiology and Performance. 2014;9(2):265-272.
  95. Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. Journal of Applied Physiology. 2013;114(4):461-471.
  96. Polman R, Houlahan K. A Cumulative Stress and Training Continuum Model: A Multidisciplinary Approach to Unexplained Underperformance Syndrome. Research in Sports Medicine. 2004;12(4):301-316.
  97. Smith DJ. A Framework for Understanding the Training Process Leading to Elite Performance. Sports Medicine. 2003;33(15):1103-1126.
  98. Turner A. The Science and Practice of Periodization: A Brief Review. Strength & Conditioning Journal. 2011;33(1).
  99. McGuigan H, Hassmen P, Rosic N, Stevens CJ. Training monitoring methods used in the field by coaches and practitioners: A systematic review. International Journal of Sports Science & Coaching. 2020;15(3):439-451.
  100. Kasper K. Sports Training Principles. Current Sports Medicine Reports. 2019;18(4).
  101. Komi PV, Komi P. Strength and power in sport. 2003.
  102. Spitz RW, Kataoka R, Dankel SJ, et al. Quantifying the Generality of Strength Adaptation: A Meta-Analysis. Sports Medicine. 2023;53(3):637-648.
  103. Maffiuletti NA, Aagaard P, Blazevich AJ, et al. Rate of force development: physiological and methodological considerations. European Journal of Applied Physiology. 2016;116(6):1091-1116.
  104. Bompa TO, Haff GG. Periodization: Theory and Methodology of Training: Human Kinetics 2009.
  105. Harre DT. Sportverlag. Berlin/Heidelberg, Germany. 1982.
  106. Del Vecchio A. Neuromechanics of the Rate of Force Development. Exercise and sport sciences reviews. 2023;51(1).
  107. Weakley J, Cowley N, Schoenfeld BJ, et al. The Effect of Feedback on Resistance Training Performance and Adaptations: A Systematic Review and Meta-analysis. Sports Medicine. 2023;53(9):1789-1803.
  108. Folland JP, Williams AG. Morphological and neurological contributions to increased strength. Sports medicine. 2007;37:145-168.
  109. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. Journal of Strength and Conditioning Research. 2017;31(12):3508-3523.
  110. Peterson MD, Rhea MR, Alvar BA. APPLICATIONS OF THE DOSE-RESPONSE FOR MUSCULAR STRENGTH DEVELOPMENT: AREVIEW OF META-ANALYTIC EFFICACY AND RELIABILITY FOR DESIGNING TRAINING PRESCRIPTION. The Journal of Strength & Conditioning Research. 2005;19(4).
  111. Kawakami Y. The Effects of Strength Training on Muscle Architecture in Humans. International Journal of Sport and Health Science. 2005;3(Special_Issue_2):208-217.
  112. Häkkinen K, Alen M, Kallinen M, et al. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. European Journal of Applied Physiology. 2000;83(1):51-62.
  113. Crewther B, Cronin J, Keogh J. Possible Stimuli for Strength and Power Adaptation. Sports Medicine. 2005;35(11):967-989.
  114. Harries SK, Lubans DR, Callister R. Systematic Review and Meta-analysis of Linear and Undulating Periodized Resistance Training Programs on Muscular Strength. The Journal of Strength & Conditioning Research. 2015;29(4):1113-1125.
  115. Kuschel LB, Sonnenburg D, Engel T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare. 2022;10(10):1937.
  116. Timmins RG, Shield AJ, Williams MD, et al. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. British Journal of Sports Medicine. 2016;50(23):1467-1472.
  117. Blazevich AJ. Effects of Physical Training and Detraining, Immobilisation, Growth and Aging on Human Fascicle Geometry. Sports Medicine. 2006;36(12):1003-1017.
  118. Gysel T, Tonoli C, Pardaens S, et al. Lower insulin sensitivity is related to lower relative muscle cross-sectional area, lower muscle density and lower handgrip force in young and middle aged non-diabetic men. J Musculoskelet Neuronal Interact. 2016;16(4):302-309.
  119. Zane AC, Reiter DA, Shardell M, et al. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell. 2017;16(3):461-468.
  120. Evans JW. Periodized Resistance Training for Enhancing Skeletal Muscle Hypertrophy and Strength: A Mini-Review. Frontiers in Physiology. 2019;10.
  121. Kell RT. The Influence of Periodized Resistance Training on Strength Changes in Men and Women. The Journal of Strength & Conditioning Research. 2011;25(3):735-744.
  122. Miranda F, Simão R, Rhea M, et al. Effects of Linear vs. Daily Undulatory Periodized Resistance Training on Maximal and Submaximal Strength Gains. The Journal of Strength & Conditioning Research. 2011;25(7):1824-1830.
  123. Williams TD, Tolusso DV, Fedewa MV, Esco MR. Comparison of Periodized and Non-Periodized Resistance Training on Maximal Strength: A Meta-Analysis. Sports Medicine. 2017;47(10):2083-2100.
  124. Maglischo EW. Training Fast Twitch Muscle Fibers: Why and How. Res Gate. 2015;19:1-30.
  125. Parmar A, Jones TW, Hayes PR. The dose-response relationship between interval-training and VO<sub>2max</sub>in well-trained endurance runners: A systematic review. Journal of Sports Sciences. 2021;39(12):1410-1427.
  126. Poole DC, Burnley M, Vanhatalo A, et al. Critical Power. Medicine & Science in Sports & Exercise. 2016;48(11):2320-2334.
  127. Huang G, Wang R, Chen P, et al. Dose–response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. European Journal of Preventive Cardiology. 2020;23(5):518-529.
  128. Borszcz F, Tramontin A, Bossi A, et al. Functional Threshold Power in Cyclists: Validity of the Concept and Physiological Responses. International journal of sports medicine. 2018;39(10):737-742.
  129. Peronnet F, Thibault G. Mathematical analysis of running performance and world running records. Journal of Applied Physiology. 1989;67(1):453-465.
  130. Borges MO, Medeiros DM, Minotto BB, Lima CS. Comparison between static stretching and proprioceptive neuromuscular facilitation on hamstring flexibility: Systematic review and meta-analysis. European Journal of Physiotherapy. 2018;20(1):12-19.
  131. Cayco CS, Labro AV, Gorgon EJR. Hold-relax and contract-relax stretching for hamstrings flexibility: A systematic review with meta-analysis. Physical Therapy in Sport. 2019;35:42-55.
  132. Osawa Y, Oguma Y. Effects of vibration on flexibility: a meta-analysis. J Musculoskelet Neuronal Interact. 2013;13(4):442-453.
  133. Diong J, Carden PC, O’Sullivan K, et al. Eccentric exercise improves joint flexibility in adults: A systematic review update and meta-analysis. Musculoskeletal Science and Practice. 2022;60:102556.
  134. Roetert EP. Retention of Flexibility. Strength & Conditioning Journal. 2001;23(5):76.
  135. Ryan ED, Beck TW, Herda TJ, et al. Do practical durations of stretching alter muscle strength? A dose-response study. Medicine & Science in Sports & Exercise. 2008;40(8):1529-1537.
  136. Kay AD, Blazevich AJ. Effect of acute static stretch on maximal muscle performance: a systematic review. Medicine & Science in Sports & Exercise®. 2012;44(1):154-164.
  137. Behm DG, Blazevich AJ, Kay AD, McHugh M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review. Applied Physiology, Nutrition, and Metabolism. 2016;41(1):1-11.
  138. Davis DS, Ashby PE, McCale KL, et al. THE EFFECTIVENESS OF 3STRETCHING TECHNIQUES ON HAMSTRING FLEXIBILITY USING CONSISTENT STRETCHING PARAMETERS. The Journal of Strength & Conditioning Research. 2005;19(1).
  139. Kataura S, Suzuki S, Matsuo S, et al. Acute Effects of the Different Intensity of Static Stretching on Flexibility and Isometric Muscle Force. The Journal of Strength & Conditioning Research. 2017;31(12).
  140. Warneke K, Wirth K, Keiner M, Schiemann S. Improvements in Flexibility Depend on Stretching Duration. Int J Exerc Sci. 2023;16(4):83-94.
  141. Freitas S, Vaz J, Bruno P, et al. Stretching Effects: High-intensity & Moderate-duration vs. Low-intensity & Long-duration. International journal of sports medicine. 2015;37(03):239-244.
  142. Freitas SR, Vaz JR, Bruno PM, et al. Are Rest Intervals Between Stretching Repetitions Effective to Acutely Increase Range of Motion? International Journal of Sports Physiology and Performance. 2015;10(2):191-197.
  143. Cipriani DJ, Terry ME, Haines MA, et al. Effect of Stretch Frequency and Sex on the Rate of Gain and Rate of Loss in Muscle Flexibility During a Hamstring-Stretching Program: A Randomized Single-Blind Longitudinal Study. The Journal of Strength & Conditioning Research. 2012;26(8):2119-2129.
  144. Behm DG, Young JD, Whitten JHD, et al. Effectiveness of Traditional Strength vs. Power Training on Muscle Strength, Power and Speed with Youth: A Systematic Review and Meta-Analysis. Frontiers in Physiology. 2017;8.
  145. Kraemer WJ, Fleck SJ, Evans WJ. Strength and Power Training: Physiological Mechanisms of Adaptation. Exercise and sport sciences reviews. 1996;24(1).
  146. Rice J, Keogh J. Power training: can it improve functional performance in older adults? A systematic review. International Journal of Exercise Science. 2009;2(2):6.
  147. Wilson JM, Loenneke JP, Jo E, et al. The Effects of Endurance, Strength, and Power Training on Muscle Fiber Type Shifting. The Journal of Strength & Conditioning Research. 2012;26(6):1724-1729.
  148. Cronin J, Sleivert G. Challenges in Understanding the Influence of Maximal Power Training on Improving Athletic Performance. Sports Medicine. 2005;35(3):213-234.
  149. Beattie K, Carson BP, Lyons M, Kenny IC. The effect of maximal-and explosive-strength training on performance indicators in cyclists. International journal of sports physiology and performance. 2017;12(4):470-480.
  150. Cormier P, Freitas TT, Rubio-Arias JÁ, Alcaraz PE. Complex and Contrast Training: Does Strength and Power Training Sequence Affect Performance-Based Adaptations in Team Sports? A Systematic Review and Meta-analysis. The Journal of Strength & Conditioning Research. 2020;34(5):1461-1479.
  151. Holtermann A, Roeleveld K, Vereijken B, Ettema G. The effect of rate of force development on maximal force production: acute and training-related aspects. European Journal of Applied Physiology. 2007;99(6):605-613.
  152. Methenitis S, Mpampoulis T, Spiliopoulou P, et al. Muscle fiber composition, jumping performance, and rate of force development adaptations induced by different power training volumes in females. Applied Physiology, Nutrition, and Metabolism. 2020;45(9):996-1006.
  153. Tillin NA, Pain MTG, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Experimental Physiology. 2012;97(5):630-641.
  154. DODD DJ, ALVAR BA. ANALYSIS OF ACUTE EXPLOSIVE TRAINING MODALITIES TO IMPROVE LOWER-BODY POWER IN BASEBALL PLAYERS. The Journal of Strength & Conditioning Research. 2007;21(4):1177-1182.
  155. Oliveira FB, Oliveira AS, Rizatto GF, Denadai BS. Resistance training for explosive and maximal strength: effects on early and late rate of force development. Journal of sports science & medicine. 2013;12(3):402.
  156. Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. European Journal of Applied Physiology. 2014;114(2):365-374.
  157. Vecchio AD, Negro F, Falla D, et al. Higher muscle fiber conduction velocity and early rate of torque development in chronically strength-trained individuals. Journal of Applied Physiology. 2018;125(4):1218-1226.
  158. Williams J. Effect of explosive-based training on musculotendinous stiffness and running economy in highly-trained distance runners. J Aust Strength Cond. 2020;28:86-92.
  159. Young WB. Transfer of Strength and Power Training to Sports Performance. International Journal of Sports Physiology and Performance. 2006;1(2):74-83.
  160. Thomas K, Brownstein CG, Dent J, et al. Neuromuscular Fatigue and Recovery after Heavy Resistance, Jump, and Sprint Training. Med Sci Sports Exerc. 2018;50(12):2526-2535.
  161. Taylor JL, Amann M, Duchateau J, et al. Neural Contributions to Muscle Fatigue. Medicine & Science in Sports & Exercise. 2016;48(11):2294-2306.
  162. Carroll TJ, Taylor JL, Gandevia SC. Recovery of central and peripheral neuromuscular fatigue after exercise. Journal of Applied Physiology. 2017;122(5):1068-1076.
  163. Lee SS, de Boef Miara M, Arnold AS, et al. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion. The Journal of experimental biology. 2013;216(Pt 2):198-207.
  164. Hodson-Tole EF, Wakeling JM. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline. The Journal of experimental biology. 2008;211(Pt 12):1882-1892.
  165. Blundell JE, Caudwell P, Gibbons C, et al. Body composition and appetite: fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. British Journal of Nutrition. 2012;107(3):445-449.
  166. Hopkins M, Blundell JE. Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity. Clin Sci (Lond). 2016;130(18):1615-1628.
  167. Most J, Redman LM. Impact of calorie restriction on energy metabolism in humans. Exp Gerontol. 2020;133:110875.
  168. Maclean PS, Bergouignan A, Cornier MA, Jackman MR. Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol. 2011;301(3):R581-600.
  169. Maclean PS, Blundell JE, Mennella JA, Batterham RL. Biological control of appetite: A daunting complexity. Obesity. 2017;25(S1):S8-S16.

 

Avis

Il n’y a pas encore d’avis.

Soyez le premier à laisser votre avis sur “Maîtrisez la Science de l’Entraînement : De la Théorie à la Pratique”